Indian Statistical Institute First Semester Exam, 2006-2007 M.Math.II Year Operator Theory Date:06-12-06

Time: 3 hrs

 $Marks: 10 \times 6 = 60$ Instructor: T S S R K Rao

Give full details wherever necessary.

- 1. Let X be a separable Banach space and let $\{x_n^*\}_{n\geq 1}$ be a weak*-dense sequence in the dual unit ball. Define $\Phi : X \to \ell^{\infty}$ by $\Phi(x) = \{x_n^*(x)\}_{n\geq 1}$. Show that the range of Φ^* is weak*-closed.
- 2. Let X and Y be Banach spaces such that the space of operators $\mathcal{L}(X, Y)$ is a separable Banach space. Show that both Y and X^{*} are separable.
- 3. Let X be a Banach space and let $A \subset X^*$ be a set separating points of X. Let τ be the smallest vector space topology on X making A continuous. Let $\wedge : (X, \tau) \to \mathbb{C}$ be a bounded linear map. Show that $\wedge \in \text{span } A$.
- 4. Let $h: [0,1] \to L^{\infty}[0,1]$ be a continuous function. Define $T: L^1[0,1] \to C[0,1]$ by $T(f)(t) = \int_0^1 f(s) \ h(t)(s) \ ds$ where $t \in [0,1]$ and $f \in L^1[0,1]$. Show that T is well-defined and $||T|| = \sup_{t \in [0,1]} ||h(t)||$.
- 5. Let A be a C^* -algebra of compact operators on a Hilbert space. Show that A is an ideal in its double commutant.
- 6. Show that the identity of a C^* -algebra, as well as any unitary vector is an extreme point of the closed unit ball.
- 7. Show that the positive cone of self adjoint elements in a C^* -algebra with identity is a closed set and the norm is monotone on this set, i.e., $0 \le x \le y \Rightarrow ||x|| \le ||y||.$
- 8. Let A be a C^{*}-algebra with identity and $x^* = x \in A$. Suppose f(x) = 0 for every state f. Show that x = 0, using functional calculus.
- 9. Let J be a proper ideal of a unital C^* -algebra A. Let $\pi : J \to B(H)$ be an irreducible representation. Show that π has a unique extension to an irreducible representation on A.
- 10. Let \hat{A} be the C^* -algebra obtained by adjoining an identity to the C^* -algebra A. Let $f : A \to \mathbb{C}$ be a positive linear functional. Show that f has a positive extension to \hat{A} .